skip to main content


Search for: All records

Creators/Authors contains: "Wang, Peter L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper presents a design procedure to achieve a flapping wing mechanism for a micro air vehicle that drives both the swing and pitch movement of the wing with one actuator. The mechanism combines a planar four bar linkage with a spatial RSSR attached to the input and output links forming a spatial Stephenson six-bar linkage. Function generation synthesis yields a planar four-bar that controls the wing swing profile. The pitch control is synthesized by inverting the movement of the combined system to isolate and compute the SS chain. In order to ensure the design achieves the specified task precision points, the SS chain was randomized within a prescribed tolerance zone. The result was 29 designs, one of which is presented in detail. 
    more » « less
  2. Stringent size, weight, and power constraints imposed on flapping-wing micro-air-vehicles (FWMAVs) make their design quite challenging. In particular, the flapping actuating mechanism represents a corner stone in the design of the whole vehicle, if not the most challenging task. In this paper, we provide a review on the several designs of flapping mechanisms in literature and compare their performances. We also provide our design and manufacturing iterations that culminated in a novel design of a FWMAV actuating mechanism that actively controls both the wing flapping (back and forth) and pitching motions using only one drive motor. In this design, we use a parallel crank rocker mechanism. Synthesis and optimization of the parallel crank rockers allowed independent control of the wing flapping and pitching angles. That is, the two angles are allowed to simultaneously follow speci c independent functions using only one drive motor. The designed mechanism is manufactured (3D printed), tested, and found to successfully achieve the desired wing motions that mimic the motion of a hummingbird wing. 
    more » « less